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Abstract

Purpose – This paper aims to offer a tutorial/introduction to new statistics arising from the theory of optimal
transport to empirical researchers in econometrics and machine learning.
Design/methodology/approach – Presenting in a tutorial/survey lecture style to help practitioners with the
theoretical material.
Findings –The tutorial survey of somemain statistical tools (arising from optimal transport theory) should help
practitioners to understand the theoretical background in order to conduct empirical research meaningfully.
Originality/value – This study is an original presentation useful for new comers to the field.
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1. Introduction
Asignificant contribution to statistics in general and to econometrics andmachine learning in
particular from optimal transport theory has surfaced recently. As such it is about time for
practitioners to be aware of it to apply it to real-world problems, especially in econometrics, to
improve credibility of empirical findings. That is precisely the purpose of this prelude.

This paper is organized as follows. Although this is a prelude where detailed technical
material is not spelled out, themain purpose is to call practitioners’ attention to new improved
statistical tools arising from optimal transport theory, and as such, optimal transport in a
nutshell will be presented in Section 2. Section 3 is about the most significant new tool in
statistical analysis, namely the notion of multivariate quantiles. Section 4 is devoted to the
elaboration of another new tool for statistics, namely theWasserstein metrics. In Section 5 we
elaborate on the interesting connection between partial identification and random set
statistics, also thanks to optimal transport.

2. Optimal transport in a nutshell
Monge (1781) was concerned with the problem of finding the cheapest way to transport, say,
soil from a collection of mines to a collection of construction sites.

In mathematical language, the problem is formulated as follows. Let PðXÞ;PðYÞ denote
the spaces of probability measures on X ;Y ⊆Rn respectively. Given μ∈ PðXÞ, ν∈ PðYÞ,
and a (cost) function c(., .): X 3Y→Rþ. A transport map is a (measurable) function T(.):
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X →Y such that ν(.)5 μ ○T�1, in symbol ν5 T#μ (T pushes μ forward to ν). The transport
cost of T is Z

X
cðx;TðxÞÞdμðxÞ

The Monge’s problem is to find an optimal transport map T*, i.e.

T* ¼ arg min

Z
X
cðx;TðxÞÞdμðxÞ : T’T#μ ¼ ν

� �

This functional optimization problem might not have a solution in general, e.g. when μ is a
Dirac probability measure whereas ν is not. But more importantly, with the optimization
variable being T, the objective function T→

R
X cðx;TðxÞÞdμðxÞ is not linear. Also, the

constraint set {T :T#μ5 ν} is not convex. As such, the computation of a solution is difficult.
Because of these issues, Monge’s problem was unsolved until Kantorovich (1942) who

reformulatedMonge’s problem to a setting avoiding the twomain difficulties mentioned above.
It is interesting to note that Monge’s difficulties have analogies in mathematics. When a

quadratic equation does not have real solutions, we enlarge its solution domain (the real line
R) to the complex plane so that the equation has complex solutions. Similarly, we consider
mixed (random) strategies in non-cooperative games to establish the existence of Nash
equilibria for any such games.

The samemethodology could be used here to “solve”Monge’s problem. And that is exactly
what Kantorovich has done.

IfTð:Þ : X 3Y→Rþ is a transport map, and IXð:Þ : X →X is the identitymap IXðxÞ ¼ x,
then ðIX 3TÞð:Þ : X →X 3Y, ðIX 3TÞðxÞ ¼ ðx;TðxÞÞ pushes μ forward to a joint

probability measure μ○ðIX 3TÞ−1 on X 3Y having μ, ν as marginal probability
measures. Thus the space of joint probability measures on X 3Y having μ, ν as marginal
probability measures, denoted as Π(μ, ν), contains the set of all (Monge) transport maps
(by identification). Elements ofΠ(μ, ν) are referred to as transport plans. Hence, by enlarging
transport maps to transport plans, Kantorovich reformulated Monge’s problem as follows.
Given μ on X, ν on Y, and cð:; :Þ : X 3Y→Rþ, find a transport plan λ* ∈ Π(μ, ν) such that

λ* ¼ arg min

Z
X 3Y

cðx; yÞdλðx; yÞ : λ∈Πðμ; νÞ
� �

The difficulties in Monge’s problem are avoided: Kantorovich’s problem always has
solutions since μ ⊗ ν ∈ Π(μ, ν); with the optimization variable λ∈Πðμ; νÞg, the objective
function λ→

R
X 3Ycðx; yÞdλðx; yÞ is linear, and the constraint set {λ : λ∈Π(μ, ν)} is convex, so

that we are in the domain of convex optimization!

3. Multivariate quantiles
The focus on (univariate) quantile functions as a basis for statistical analysis has been
advocated by Parzen (1979). In fact, in the comment to Breiman’s paper (2001), Parzen even
suggested that there are many possible “cultures” for statistical modeling where “quantile
culture” could be one of them.

Without digging into whether Parzen’s quantile culture is a culture in Breiman’s sense, we
could view that the use of quantile functions is part of the standard statistical analysis in
which, instead of distribution functions, we focus on quantile functions. The two cultures
elaborated in Breiman’s paper (2001), namely the data modeling and algorithmic modeling,
might be not really disjoint, i.e. they could be combined to form a new culture. That was
precisely suggested in “Statistical Modeling: The Three cultures” in 2023 by Daoud and
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Dubhashi (2023) as a hybridmodeling culture! Perhaps, it could be so aswewitness at present
the interests of Econometricians in Machine (or Statistical) Learning?

Anyway, the point we want to make is this. It is true that the use of quantile functions,
such as in quantile regression, provides more information than that of mean regression. But
why Parzen’s “quantile culture” did not get off the ground or ring the bell, say, in multivariate
analysis?

The answer could be twofold. As mean (linear) regression, in multivariate analysis, is the
bread-and-butter tool in statistics, quantile regression, introduced by Koenker and Basett
(1978), is also only for one dimension. The second reason is crucial: there is no counterpart of
multivariate mean regression, and this is because of the lack of a “correct” notion of
multivariate (vector) quantile functions, let alone its associated regression analysis.

Specifically, the mathematical problem of how to generalize the familiar notion of an
univariate quantile function to higher dimensions is difficult because the explicit definition of
a quantile function on the real lineR is based on the total order relation≤ ofR, whereas there
is no such order relation on Rn with n > 1.

In the literature, among various attempts to “solve” the problem, e.g. Hallin et al. (2010) and
Serfling and Zuo (2010), an attemptwas to consider the partial order relation ofRnwhen n>1,
exemplified by Belloni and Winkler (2011), leading to the notion of “partial multivariate
quantiles”. This is typical of an approach to avoid the lack of the total order relation onR, but
does not really address the original problem, i.e. partial vector quantile functions are not
generalizations of univariate quantile functions. They are just substitutes.

Finally, as Koenker (2017) acknowledged, the happy ending arrived in 2016 with the
works of Carlier et al. (2016, 2017), and that was inspired from the Theory of Optimal
Transport, Villani (2003).

This Section aims at elaborating a bit on the notion of vector (multivariate) quantile
functions correctly generalizing the familiar notion of univariate quantile functions.

LetX be a real-valued random variable (the name of some quantity), i.e. a measurable map
from a probability space ðΩ;A;PÞ, its source of uncertainty, to the measurable space
ðR;BðRÞÞ, its sampling space. Its law is the probability measure PX on BðRÞ obtained by
pushing forward P by X, i.e. PX(.)5 P ○ X�1, in symbol PX 5 X#P. By Lebesgue-Stieltjes
theorem, PX 5 dF where Fð:Þ : R→ ½0; 1� is the distribution function of X. The distribution
function F of X contains all information about the random evolution of X. If we know F, can
we create the data fromX? This is the problem known as simulations. Yes, but not directly by
using F. Instead, we consider its “pseudo inverse” function F[�1] known as its (univariate)
quantile function defined explicitly as F ½−1�ð:Þ : ð0; 1Þ→R,

F ½−1�ðuÞ ¼ inffx∈R : FðxÞ≥ ug

and show that F[�1] will push forward the uniform probability measure du on (0,1) to dF (F[�1]

#du 5 dF, i.e. dFð:Þ ¼ du○ðF ½−1�Þ−1) so that X¼D F ½−1�ðUÞ (equal in distribution) where U
denotes the (uniform) random variable on (0,1) with law du.

While the pseudo inverse F[�1](.) provides a reasonable mathematical definition for
quantiles, its explicit definition involves the total order relation≤ of the real lineR and that is
the difficulty to extend it to higher dimensions, say, as a function Gð:Þ : ð0; 1Þn →Rn

with n > 1.
A short story of this extension problem seems interesting to note. Traditionally, the

extension of a concept in one dimension to several dimensions could be done componentwise,
such as the concept of the mean of a random vector. But defining a vector quantile function
componentwise does not work since the property G#du5 dF, for du as uniform law on (0,1)n,
and dF as law of a random vector on Rn (for n > 1) is not satisfied.
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Remark. Of course F(.) is characterized by F[�1](.), since if Qð:Þ : ð0; 1Þ→R is monotone
non decreasing and left continuous then there exists a unique distribution
function F(.) such that Q(.)5 F[�1](.). However, such a characterization of F[�1](.)
does not extend to higher dimensions.

Also, traditionally, if we cannot use directly an established concept in one setting to extend it
to another setting, we look for a possible equivalent concept (a characterization of the
established concept) that can be generalized. For example, to generalize ordinary sets to fuzzy
sets, we use the indicator function of an ordinary set (as its membership function) as a
characterization of the set fromwhich to extend to the new setting. Here the question is: what
is a characterization of F[�1], i.e. another equivalent way to define it.

Perhaps, previous attempts to generalize univariate quantile functions to vector quantile
functions did not ask this question. It turns out that the answer is hidden in plain sight!
Besides the property F[�1]#du 5 dF, the (explicitly defined) function F ½−1�ð:Þ : ð0; 1Þ→R is
monotone non decreasing, and these two properties provide a characterization for F[�1].
Specifically, F[�1](.): ð0; 1Þ→R is the unique function that is monotone non decreasing and
satisfies G#du 5 dF :

Lemma. If Gð:Þ : ð0; 1Þ→R is monotone non decreasing and satisfies G#du5 dF, then
G(.)5 F[�1], i.e.
Proof. By monotonicity of G, we have

−∞; xð �⊆G−1
−∞;GðxÞð �ð Þ

so that

FduðxÞ ¼ du −∞; xð �≤ du G−1
�

−∞;GðxÞð �ð Þ ¼ dF −∞;GðxÞð � ¼ FðGðxÞÞ

and G(x) ≥ F[�1](x)

Consider the points x such that G(x) > F[�1](x). This means that there exists «o > 0 such that
F(G(x)� «) ≥ Fdu(x) for every « ∈ [0, «o]. Also, since G

−1 ðð −∞;GðxÞ− εÞ⊆ ð−∞; xÞ, we have
F(G(x)� «) < Fdu(x). Thus, F(G(x)� «)5 Fdu(x) for any «∈ [0, «o]. Note that F(G(x)� «) is the
value of F which F takes on an interval where it is constant. But these intervals are a
countable quantity, so that the values yj of F on these intervals are also countable. Therefore,
the points xwhere G(x) > F[�1](x) are contained in ∪j{x : Fdu(x)5 yj} which is du� negligible

(since du is atomless). As a consequence, G(x) 5 F[�1](x), du � almost everywhere. Q.E.D.

As a consequence, the above characterization of F[�1] can be used to obtain its counterpart
in higher dimensions since on Rn , with n > 1, the property G#du5 dFmakes sense and the
monotone non decreasing property for Gð:Þ : ð0; 1Þn →Rn is equivalent to

< u� v;GðuÞ � GðvÞ > ≥ 0

where < :; : > denotes the scalar product on Rn.

Remark. The characterization of F[�1] brings out the fact that the total order relation onR
does not play an essential role in defining it.

The point is this. If Gð:Þ : ð0; 1Þn → Rn (for n > 1) is going to be an extension of
F ½−1�ð:Þ : ð0; 1Þ→R,G(.) has to bemonotone non decreasing and pushing forward du to dF (in
dimension n > 1).

The upshot is that, for n ≥ 1, these two properties are characteristic for the notion of
quantiles, in the sense that there is uniquely one such function Gð:Þ : ð0; 1Þn → Rn, so that,
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for n 5 1, it coincides with F[�1](.). Thus, in dimension 1, the familiar univariate quantile
function F[�1] can be defined without using explicitly the total order relation of R !

This upshot was discovered in the context of Optimal Transport, see Villani (2003),
Brenier (1991),McCam (1995), Carlier et al. (2017) andGalichon (2016), where a (n-dimensional)
vector quantile function is the unique monotone noncreasing function Gð:Þ : ð0; 1Þn →Rn

such that G#du 5 dF.
Clearly, the upshot tells us that the familiar univariate quantile function can be

generalized to higher dimensions rigorously. However, except in dimension 1, the vector
quantile functions so determined are not obtained in a close form. Practitioners should
consult the literature for computational works.

Remark. The following notes could give a flavor of optimal transport in getting, finally,
the correct notion of multivariate quantiles.

In the setting of optimal transport, F[�1](.) is characterized by a unique “transport map”

T*ð:Þ : ð0; 1Þ→R, monotone non decreasing and T*#du 5 dF, where

T* ¼ arg min

Z 1

0

1

2

����u� TðuÞj2du : Tdu ¼ dF

� �

i.e. the solution of Monge’s problem with cost function cð:; :Þ : ð0; 1Þ3R→Rþ :

ðu; xÞ→ 1
2
ju−TðuÞj2. On the other hand, the function wð:Þ : ð0; 1Þ→R

wðuÞ ¼
Z u

0

F ½−1�ðvÞdv

is convex, so that F[�1](.) is the derivative of the convex function w(.) on (0,1).

In dimension n > 1, the above leads to the notion of multivariate quantile function by
McCam’s theorem (1995): Let Fð:Þ : Rn

→ ½0; 1� be a multivariate distribution function, then
there exists a unique gradient∇wð:Þ : ð0; 1Þn →Rn of some convex function wð:Þ : ð0; 1Þn →R
(w is not unique, but∇w is unique) such that∇w#du5 dF, where du is the uniform lawon (0,1)n.

4. Wasserstein metrics
We elaborate now upon a new improved type of metrics on spaces of probability measures
arising from optimal transport theory. The main improvement seems to be that these new
metrics, called Wasserstein metrics, do take into account of the geometry of the underlying
sample space. Their construction surfaces naturally in the setting of optimal transport
theory. Such metrics are useful, e.g. for machine learning.

Recall that, in applications of statistics, we often use a divergence D(., .) on a space of
probability measures to “measure” of the difference between two probability measures. Such
a divergence is used to compare probability measures, for example D(μ, ν) is the difference
between a model μ and a data ν.

The most well-known divergence is the Kullback-Leibler divergence on probability
measures on ðR;BðRÞÞ:

KLðμ==νÞ ¼
Z
R

f ðxÞlog f ðxÞ
gðxÞ

� �
dγðxÞ

where f(.), g(.) are probability density of μ, ν respectively (with respect to some dominating
measure γ onBðRÞ). TheKL divergence is not a distance since it is not symmetric, but it does
have analogous properties which could be used to substitute for a metric, such as the Total
Variation metric
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TVðμ; νÞ ¼ supfjμðAÞ � νðAÞj : A∈BðRÞg
The KL divergence appears in the model selection criterion AIC.

Metrics on spaces of probability measures are viewed as special divergences. Divergences
abound. The choice of a divergence or a metric for comparing probability measures depends
on its usefulness for the problem at hand. For example, the Kullback-Leibler divergence is
used in AIC because of its relation to Maximum Likelihood Estimation.

Consider the case where X ¼ Y ⊆Rn, we are interested in the following Wasserstein
divergence (a priori) on the subset PpðXÞ of the set PðXÞ of all (Borel) probability measures
on X, where

PpðXÞ ¼ μ∈PðXÞ :
Z
X
kxkpdμðxÞ < ∞

� �

namely, Wp(., .): PpðXÞ3PpðXÞ→ 0;∞½ Þ

Wpðμ; νÞ ¼ inf
λ∈Πðμ;νÞ

Z
X 3X

kx� ykpdλðx; yÞ
� 	1

p

Specifically, we are going to show that theWasserstein divergenceWp(., .) is in fact a bona fide
metric on PpðXÞ, a well-known fact in the literature.

We will carry out the complete proof that Wasserstein divergence is in fact a bona fide
metric to emphasize the interesting notion of disintegration (of measures).

Disintegration is a process of extracting a conditional probability measure from a joint
probability measure on a product space.

To be concrete, let X ;Y ⊆Rn, and ðX ;BðXÞÞ, ðY;BðYÞÞ, ðX 3Y; ;BðX 3YÞÞ, be (Borel)
measurable spaces. We denote byPðXÞ,PðYÞ, PðX 3YÞ the set of all probability measures
on these spaces.

For λ∈PðX 3YÞ, its marginal probability measure onX is μ∈PðXÞ, defined as, for any
A∈BðXÞ, μðAÞ ¼ λðA3YÞ.

A disintegration of λ with respect to μ is a family of probability measures νx ∈PðYÞ, for
any x∈X, such that, for A∈BðXÞ and B∈BðYÞ, we have

λðA3BÞ ¼
Z
A

νxðBÞdμðxÞ

Symbolically,

λ ¼
Z
X
ðδx ⊗ νxÞdμðxÞ

where δx is the Diract probability measure on X, at x∈X, and δx ⊗ νx denotes the product
measure (δx ⊗ νx)(A 3 B) 5 δx(A)νx(B).

The representation of λ is so written since

λðA3BÞ ¼
Z
X
ðδx ⊗ νxÞðA3BÞdμðxÞ ¼

Z
X
ðδxðAÞνxÞðBÞdμðxÞ ¼

Z
A

νxðBÞdμðxÞ

Below is a tutorial on disintegration, just enough for using it in proving the triangle inequality
for Wasserstein metrics. A reference could be Dudley (2003) or Graf and Mauldin (1989).
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Now, for X ¼ Rn, with norm k.k, and p ≥ 1, the pth- Wasserstein metric is

Wp
pðdF ; dGÞ ¼ inf

�
EπkX � Ykp : X ∼ dF;Y ∼ dG; π ∈ΠðdF ; dGÞ


where F, G are n � dimensional distribution functions of X, Y, respectively, and π has 2n �
dimensional distribution function H with F, G as marginals, i.e.

Hðx1; . . . xn;∞; . . . ;∞Þ ¼ Fðx1; . . . xnÞ; Hð∞; . . . ;∞; y1; . . . yn; Þ ¼ Gðy1; . . . ynÞ
More generally, Wasserstein distance is a metric on spaces of probability measures. Let
ðX ; ρÞ be a metric space. Consider the situation where we are interested in probability
measures governing the random evolution of random elements taking values in X (i.e. their
“laws” operating on Borel σ� fieldBðXÞ). Comparisons of probabilitymeasures are standard
concerns in applications, such as in the so-called empirical processes.

For μ, ν two probability measures on ðX ;BðXÞÞ, consider the nonnegative quantity

W ðμ; νÞ ¼ inf

Z
X 3X

ρðx; yÞdπðx; yÞ
� �

≤ þ∞

where the infimum is taken over all joint probability measure π with marginals (projections)
μ, ν.

We will denote by Π(μ, ν) the set of probability measures π on the product space X 3X
having μ, ν as marginal measures, i.e. μð:Þ ¼ πð:3XÞ; νð:Þ ¼ πðX 3 :Þ.

Note that the above quantity can be written as:$$

W ðμ; νÞ ¼ inffEρðX ;Y Þ : X ∼ μ;Y ∼ νg

i.e. the infimum is taken over all random variablesX,Ywith values in ðX ;BðXÞÞ, andX,Y are
distributed as μ, ν, respectively.

On a subset of PðXÞwhere W(μ, ν) < ∞, for μ, ν in it, W(., .) is a bona fide metric.
We come now to the main investigation of Wasserstein divergences (a priori) on a metric

space X for which disintegration exists, such as Rn or a polish space.
Let PðXÞ denotes the set of all (Borel) probability measures on BðXÞ. For p ≥ 1, let

PpðXÞ⊆PðXÞ, be the subset of probability measures with finite p � moment, i.e.

PpðXÞ ¼ μ∈PðXÞ :
Z
X
kxkpdμðxÞ < ∞

� �

where k.k is the Euclidean norm of Rn.

Consider the Wasserstein divergence on PpðXÞ: For μ; ν∈PpðXÞ, and p ≥ 1, let

Wpðμ; νÞ ¼ inf
λ∈Πðμ;νÞ

Z
X 3X

kx� ykpdλðx; yÞ
� 	1

p

This is just an exercise to verify that Wp(., .) does satisfy the axioms of a metric,
i.e. Wpð:; :Þ : PpðXÞ3PpðXÞ→Rþ ¼ ½0;∞Þ is such that

(1) Wp(μ, ν) 5 Wp(ν, μ)

(2) Wp(μ, ν) 5 05μ 5 ν

(3) For any μ; ν; γ ∈PpðXÞ, Wp(μ, ν) ≤ Wp(μ, γ) þ Wp(γ, ν)

First, since, for x; y∈Rn, kx � ykp ≤ c(kxkp þ kykp), so that , for μ; ν∈PpðRnÞ, we have
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Wpðμ; νÞ≤ c

Z
X
kxkpdμðxÞ þ

Z
X
kxkpdνðxÞ

� 	
< ∞

While (i) is obvious (since the function (x, y)→ kx� ykp is symmetric, andΠ(μ, ν)’Π(ν, μ)) and
(ii) can be seen as follows.

For ν5 μ , the optimal transport map T : X →X is the identity map I(x)5 x, so that the
optimal transport plan is λ 5 (I, I)#μ concentrated on {(x, y) : x 5 y} and hence

Wpðμ; μÞ ¼
Z
X 3X

kx� ykpdλðx; yÞ ¼ 0

Conversely, if Wp(μ, ν) 5 0, then, since

inf
λ∈Πðμ;νÞ

Z
X 3X

kx� ykpdλðx; yÞ
� 	1

p

is attained, there exists λ ∈ Π(μ, ν) such that
R
X 3Xkx− ykpdλðx; yÞ ¼ 0 so that λ is

concentrated on {(x, y) : x 5 y} which, in turn, implies that, for any A∈BðRnÞ,
μðAÞ ¼ λðA3RnÞ ¼ λðA3AÞ ¼ λðRn 3AÞ ¼ νðAÞ

i.e. μ 5 ν.

Remark. For p≤ q, we haveWp(μ, ν)≤Wq(μ, ν), since, by Jensen’s inequality (with respect
to the convex function t→ t

q
p), for any λ ∈ Π(μ, ν),

Wq
pðμ; νÞ≤

Z
X 3X

kx� ykpdλðx; yÞ
� 	q

p

≤

�Z
X 3X

kx� ykqdλðx; yÞ
	
¼ Wq

qðμ; νÞ

However, the triangle inequality (iii) is not so obvious!
Interestingly, it is the notion of disintegration which will provide a method to verify it.
Wewish to show that, for any μj, j5 1, 2, 3 inPpðRnÞ, for p≥ 1, with supportX j ⊆Rn, j5 1,

2, 3, respectively, we should have

Wpðμ1; μ2Þ≤Wpðμ1; μ3Þ þWpðμ3; μ2Þ
For this, we follow Villani (2003).

Lemma. Let μj, j 5 1, 2, 3 in PpðRnÞ, for p ≥ 1, with support X j ⊆Rn, j 5 1, 2, 3,
respectively. Let λ12 ∈ Π(μ1, μ2), and λ23 ∈ Π(μ2, μ3).

Then there exists a probability measure λ onX 1 3X 2 3X 3 having marginals λ12 and λ23 on
X 1 3X 2, and X 2 3X 3, respectively.

Proof.Disintegrate both λ12 and λ23 with respect to their commonmarginal μ2, and denote
their disintegrations as νx1; γx3, respectively, so that

λ12 ¼
Z
X2

�
νx1 ⊗ δx2

�
dμ2ðx2Þ
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λ23 ¼
Z
X2

�
δx2 ⊗ γx3

�
dμ2ðx2Þ

Then λ∈PðX 1 3X 2 3X 3Þ constructed as

λ ¼
Z
X2

�
νx1 ⊗ δx2 ⊗ γx3

�
dμ2ðx2Þ

Then, for A1 ∈BðX 1Þ, A2 ∈BðX 2Þ, A3 ∈BðX 3Þ, we have

λðA1 3A2 3X 3Þ ¼
Z
X2

�
νx1 ⊗ δx2 ⊗ γx3

�ðA1 3A2 3X 3Þdμ2ðx2Þ ¼
Z
X2

νx1
� ðA1Þδx2ðA2Þγx3ðX 3Þdμ2ðx2Þ ¼

Z
X2

νx1
� ðA1Þδx2ðA2Þdμ2ðx2Þ ¼

Z
X2

�
νx1 ⊗ δx2

�ðA1 3A2Þdμ2ðx2Þ ¼ λ12ðA1 3A2Þ

Similarly for

λðX 1 3A2 3A3Þ ¼ λ23ðA2 3A3Þ

QED.

Then the proof of the triangle inequality for Wasserstein metrics follows:
Let μj, j 5 1, 2, 3 in PpðRnÞ, for p ≥ 1, with support X j ⊆Rn, j 5 1, 2, 3, respectively.
Note that, from OT theory (existence of solutions of Kantorovich’s problem),

Wp

�
μi; μj

� ¼ inf
λ∈Πðμi ;μjÞ

Z
X i 3X j

kxi � xjkpdλðxi; xjÞ
" #1

p

is attained with some optimal transport plan λij ∈ Π(μi, μj). Thus,

Wp

�
μi; μj

� ¼ Z
X i 3X j

kxi � xjkpdλijðxi; xjÞ
" #1

p

Now, let λ, in the above Lemma corresponding to μj, j5 1, 2, 3 , be the probability measure on
X 1 3X 2 3X 3 having marginals λ12 and λ23 on X 1 3X 2, and X 2 3X 3, respectively.

We then have

Wpðμ1; μ3Þ ¼
Z
X1 3X3

kx1 � x3kpdλ13ðx1; x3Þ
� 	1

p

¼
�Z

X1 3X3 3X3

kx1 � x3kpdλðx1; x2; x3Þ
	1

p

≤

Z
X1 3X3 3X3

ðkx1 � x2k þ kx2 � x3kÞpdλðx1; x2; x3Þ
� 	1

p

≤
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Z
X1 3X3 3X3

kx1 � x2kpdλðx1; x2; x3Þ
� 	1

p

þ
Z
X1 3X3 3X3

kx2 � x3kpdλðx1; x2; x3Þ
� 	1

p

¼

Z
X1 3X3

kx1 � x2kpdλ12ðx1; x2Þ
� 	1

p

þ
Z
X3 3X3

kx2 � x3kpdλ23ðx1; x2Þ
� 	1

p

¼

Wpðμ1; μ2Þ þWpðμ2; μ3Þ
Q.E.D.

5. Connection with random set statistics
One more useful statistical methodology arising from optimal transport theory was the
unexpected connection between the current topic of partial identification (of statistical
models) and random set statistics via optimal transport, as pointed out by Galichon (2016).

First, it seems here is a good place to spell out briefly what is statistics and how
statisticians should conduct statistics! Roughly speaking, statistics is about finding the truth
from data, and statistical works should be credible.

Unlike physical science, we need models to conduct statistics. Based upon observed data,
statisticians propose models. A model is a subjective (stochastic) equation together with a set
of assumptions supporting it. Of course each model contains unknown “parameters” which
need to be estimated (from data) to specify it for, e.g. prediction and decision-making.

As we all know (since we “follow” the traditional approach to without any hesitation) that
the maintained assumptions (whether they are justified or not) are there to allow us to use
available data to consistently estimate the model parameters, noting that estimability of
parameters in this sense is related to the notion of identification.

In order to justify our statistical estimation of our model parameter, say, in the model
{Fθ θ∈Θ}, we impose assumptions tomake the true (but unknown) parameter θo identifiable
(i.e. point identifiable) in the sense that the map θ→ Fθ is injective. A well-known example for
all is the linear supply and demand model in microeconomics. General supply and demand
models are provided by economic theory, but when a text book advises us to use a linear
model (for simplicity?), it puts down assumptions without justifications to make sure that
the model parameter of interest is point identifiable.

If the maintained assumptions are not plausible, the map θ → Fθ might not be injective,
i.e. there are θ0 ≠ θ such that Fθ 5 Fθ0 (θ and θ0 are said to be observationally equivalent) so
that the model parameter is not point-identifiable, such as in games with multiple Nash
equilibria. In such a situation, should we give up the analysis or the empirical attempt ? No, as
Manski (e.g. 2007) put it, we could live with it and look for a new way to estimate the model
parameter, not as a point but as a subset of the parameter space, called the identified set.
Thus, estimating an identified set is the main goal for partially identified statistical models.

In this improved statistical setting, we are facing partially identified models where point
estimation becomes set estimation. But when the estimation target is a set, the identified set
(i.e. set of observationally equivalent parameters), its estimated set is a random set
(a set-valued function of the data). Thus, we are facing a natural extension of classical
statistics, namely statistics with random sets rather with random points.

Now, the general theory of probability supporting statistical analysis should cover the
theory of random sets (as an extension of random vectors) which are well defined random
elements. See Matheron (1975) or Nguyen (2006). In other words, in view of credible statistics,
statistics of random sets should take a central stage in empirical research. However, the
statistical theory of set-valued statistics is still young. In some contexts, e.g. estimating the
level sets of an unknown probability density function, the estimation method is Hartigan’s
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(1987) excess mass which is the counterpart of maximum likelihood method in traditional
statistics. See also Nguyen (2006).

What is “interesting” is that some partial identification problems can be formulated as an
optimal transport problem which in turn provides a connection with random sets useful for
computational purposes. See Galichon (2016) for details. Here we elaborate a bit on the theory
of random sets since after all as the identified set is a set, its estimator will be a random set
statistic, and we need to investigate its properties just like the special case of random vector
statistics. The point is this. While random set statistics is the natural approach to inference
about set parameters in partially identified models, the context in which these partially
identified models can be formulated as optimal transport problems brings out specific ways
for conducting inference.

Now, in spirit, partial identification setting is somewhat similar to statistics with coarse
data where the data from the desired DGP (an unknown distribution) are not observable, but
instead the data from a random set containing it are observed, i.e. the latent random variable
of interest is an almost sure selector of the observed random set. As such, it is related to the
estimation of the identified set from a random set viewpoint.

In Galichon’s analysis (2016) the focus is the identification of an identified set of a partially
identified model, and the connection with random set is based upon a result of Artstein (1983)
which is generalized by Norberg (1992) as follows.

First of all, capacity functionals play the role of probability laws of random (closed) sets on

Rd by Choquet’s Theorem (the counterpart of Lebesgue- Stieltjes Theorem for random
vectors), see Nguyen (2006) for an introduction. Two capacity functionals T1, T2 are said to
form an ordered coupling if there exists a common probability space ðΩ;A;PÞ on which are
defined two random closed sets S1, S2 such that S2 ⊆ S1 P, i.e. where S1, S2 have T1, T2 as
capacity functionals, respectively. When the random set S2 is single-valued, a special case
which is identified with a random vector, it becomes an a.s. selector of S1, i.e. P(S2 ∈ S1)5 1.
This special case corresponds to the situation in coarse data analysis as well as in partial
identification estimation (of identified sets). An useful result from random set theory for it is
the following which allows us to characterize an identified set as the core of a capacity
functional of a random set.

Theorem (Norberg, 1992). Let μ be a probability measure on BðRdÞ and T be a capacity
functional, then the following are equivalent:

(1) μ ≤ T on compact sets of Rd

(2) There exists a common probability space ðΩ;A;PÞ on which are defined a random
closed set Swith capacity functional T and a random vector Xwith law μ, and which
is an a.s. selector of S.

We elaborate a bit on the essentials of random set theory to introduce statisticians to random
set statistics.

Just like traditional or standard way to start a probability theory for statistical
applications, we consider the simple situation where random quantities take values in a
finite set.

LetU be a finite set with n elements. The power set ofU is denoted as 2U (set of functions
U → {0, 1}). For A ⊆ U, #(A) denotes the number of elements of the subset A.

The source of uncertainty is a probability space ðΩ;A;PÞ. A map X(.) : Ω→ 2U is a finite
random set (a set obtained at random).

The law of X is the probability measure PX on the power set of 2
U , where PX(.)5 P ○ X�1

(the pushforward of P by X).
As in the case of finite random variables, PX is completely determined by the probability

density ofX, namely f(.) : 2U→ [0, 1] where f(A)5 P(X5A). Alternatively, PX is characterized
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by the distribution function F(.) : 2U → [0, 1], where F(A)5 P(X ⊆ A). The counterpart of the
characterization of distribution functions of random variables is this.

A set-function F(.) : 2U → [0, 1] is a distribution function of a (finite) random set X if it
satisfies the following conditions:

(1) F(∅)5 0, F(U) 5 1

(2) For any k ≥ 2, and Ai, i 5 1, 2, . . ., k, subsets of U,

F
�
∪ k

i¼1Ai

�
≥

X
∅≠I ⊆ f1;2;...;kg

ð−1Þ#ðIÞþ1
Fð\i∈IAiÞ

Alternatively, since T(A)5 P(X ∩A≠∅)5 1� F(Ac), the law of X can be also characterized
by the set function T(.) : 2U → [0, 1], called the capacity functional of X.

Axiomatically, a capacity function is a function T(.) : 2U → [0, 1] satisfying the following:

(1) T(∅)5 0, T(U) 5 1

(2) For any k ≥ 2, and Ai, i 5 1, 2, . . ., k, subsets of U, we have

T
�\k

i¼1Ai

�
≤

X
∅≠I ⊆ f1;2;...;kg

ð−1Þ#ðIÞþ1
Tð∪ i∈IAiÞ

Now let X be a non-empty random set on the finite setU (i.e. P(X5∅)5 0). The core CðTÞ of
its capacity functional T is the set of probability measures μ on U such that μ(.) ≤ T(.).

We extend all the above to the case where the sampling space U ¼ Rd.

Remember that, for random vectors, i.e. random elements taking values in Rd, their
probabilistic backgroundwas based on the theory ofmeasures on the Borelmeasurable space

ðRd;BðRdÞÞ where the Borel σ � field BðRdÞ is constructed using the topology of Rd. For

random sets taking values as subsets ofRd, we need a topology on 2R
d

. Now a random vector

is identified as a random set taking singletons as values. But each {x} is a closed set of Rd.
Thus, followingMatheron (1975), we consider random sets taking values as closed subsets of

Rd, denoted as FðRdÞ on which a “hit-or-miss topology” is established to obtain its Borel
σ � field, denoted as BðFÞ.

A random closed set, defined on a probability space ðΩ;A;PÞ (its source of uncertainty), is
a map Xð:Þ : Ω→FðRdÞ,A−BðFÞ- measurable. Its probability law is the probability PX on
BðFÞ obtained as PX(.)5 P○X�1(.).

Thenotion of capacity functionals in the finite case is extendedas follows. LetKðRdÞdenote the
set of compact subsets ofRd. ThenTð:Þ : KðRdÞ →R is called a capacity functional if it satisfies:

(1) 0 ≤ T(.) ≤ 1, T(∅)5 0

(2) For any k ≥ 2, and Ai, i 5 1, 2, . . ., k, subsets of U, we have

T
�\k

i¼1Ai

�
≤

X
∅≠I ⊆ f1;2;...;kg

ð−1Þ#ðIÞþ1
Tð∪ i∈IAiÞ

(3) If Kn ∈KðRdÞ and KnaK ∈KðRdÞ then T(Kn) a T(K).

The counterpart of Lebesgue-Stieltjes Theorem is the Choquet’s Theorem: IfTð:Þ : KðRdÞ →R
is a capacity functional, then there exists a unique probability measureQ onBðFÞ such that, for
all K ∈ KðRdÞ, QðFKÞ ¼ TðKÞ, where FK ¼ fA∈FðRdÞ : A \ K ≠∅g.
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In other words, the capacity functional characterizes the probability law of a random
closed set. The core of a capacity functional is the set of probability measures μ on

ðRd;BðRdÞÞ such that μ ≤ T on KðRdÞ. Norberg’s Theorem (1992) is valid for Rd so that the

core of a capacity functional (of a random closed set on Rd) is related to identified sets in
partially identified statistical models.
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